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Abstract
Transversal vibrations of a plane rooted tree of Stieltjes strings are considered
with Dirichlet boundary conditions at each pendant vertex. Continuity and
Kirchhoff conditions are imposed at each interior vertex except the root. The
Dirichlet problem is that with the Dirichlet condition at the root, and the
Neumann problem is that with continuity and Kirchhoff conditions at the root.
It is shown that strict interlacing is a sufficient condition for two sequences of
real numbers to be the spectra of Neumann and Dirichlet problems generated
by Stieltjes string recurrent relations on any prescribed tree.

PACS number: 43.20.Mv
Mathematics Subject Classification: 34K29, 34K10, 39A70

1. Introduction

Inverse spectral and scattering problems on graph domains are a rapidly developing branch of
analysis. Usually the Sturm–Liouville, the Dirac equation or the string equation is considered
on the edges of a graph subject to matching and boundary conditions at the vertices. This can
be described as a spectral problem for an operator (see e.g. [9, 10, 30]) which is self-adjoint
under certain conditions [6, 20]. The justification for such models can be found in [22]. There
are different approaches to inverse problems on graphs: (1) recovering the form of a metric
graph using spectral or scattering data (see e.g. [1, 16]), (2) the form of the graph is known
a priori and the aim is to recover the potentials of the Sturm–Liouville equation on the edges
(see e.g. [15, 23, 28, 29, 32]) or the mass distribution [3, 27] using spectral or scattering data.

The tradition of using Dirichlet and Neumann spectra to solve an inverse problem on
a graph [5, 32] came from the classical results of Borg [2] and Levitan and Gasymov [26]
for the inverse spectral problem on a finite interval. It is possible to consider two boundary
value problems with the Neumann condition at a certain pendant vertex and with the Dirichlet
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condition at this vertex [5, 32] and to use their spectra as the given data for solving the inverse
problem.

However, in the case of graph domains it is possible [25] to introduce analogues of
Neumann and Dirichlet conditions at an interior vertex chosen as the root. Namely, for
the case of Sturm–Liouville equations, −y ′′

j + qj (x)yj = λ2yj on the edges yj (aj ) = 0
(j = 1, 2, . . . , d(v)) where v is an interior vertex (the root) of degree d(v) corresponds to
Dirichlet conditions and yj (aj ) = yk(ak) and

∑d(v)
j=1 y ′

j (aj ) = 0 corresponds to the Neumann
case. In such terms, the problems in [3, 14, 17, 28, 29] where star graphs were considered
can be treated as Neumann–Dirichlet two-spectral problems. Here we extend the results of
[3] and [4] to the case of a tree, since we are interested in the existence of the solution of the
inverse problem admitting the non-uniqueness of it.

Let us recall that Krein ([21], see also [13]) called a massless thread bearing beads (point
masses) a Stieltjes string. Such strings are widely used as a simple model in mechanics
[11, 12, 24], and one finds a similar equation in the theory of electric circuits [31] (the Cauer
method [7, 31]). For the simple case of one string, the inverse problem for two spectra
was completely solved in [13]. In particular, in [13] the procedure of recovering the values of
masses and intervals between them by the two spectra and the total length of the string was given
as well as characterization of the spectra. In [8], the masses and the intervals between them
were calculated using frequencies of vibrations obtained from experiment by the method used
in [13].

We consider the recurrent relations of the Stieltjes string defined on a tree domain. An
arbitrary vertex v is chosen as the root. We impose continuity and Kirchhoff conditions at
all the interior vertices except at v. At the pendant vertices, Dirichlet conditions are satisfied.
At the root v, we impose continuity conditions if the root is not pendant. Then we consider
the Dirichlet problem, which we obtain by adding the Dirichlet condition at the root, and the
Neumann problem, where we add the Kirchhoff condition at the root. If the root is pendant
then the Kirchhoff condition is nothing but the Neumann condition. If the total number of the
point masses is n then the Dirichlet problem has 2n eigenvalues, and the same is true for the
Neumann problem. These eigenvalues interlace. In general, this interlacing is not strict:

0 < μ2
1 � ν2

1 � · · · � μ2
n−1 � ν2

n−1 � μ2
n � ν2

n(μ−k = −μk, ν−k = −νk).

Characterization of the two spectra for a star-shaped graph rooted at the interior vertex has
been given in [3]. Here, we establish necessary conditions for two sequences of real numbers
to be the spectra of the Neumann and Dirichlet problems on an arbitrary tree. These conditions
include the above-mentioned interlacing and the inequalities: (1) pN(z) � q−κ, where pN(z)

is the multiplicity of λ = √
z as for an eigenvalue of the Neumann problem, q is the number of

the edges, κ is the number of the interior vertices; (2) for an interior vertex pD(z) � q − κ + 1
where pD(z) is the multiplicity of λ = √

z as for an eigenvalue of the Dirichlet problem and
(3) for a pendant vertex pD(z) + pN(z) � 2q − 2κ − 1.

It is shown that, for any two strictly interlacing finite sets of real numbers,

0 < μ2
1 < · · · < μ2

n−1 < ν2
n−1 < μ2

n < ν2
n,

and for any finite metric tree, a suitable placement of point masses on the tree will generate
these prescribed spectra {μk}nk=−n,k �=0 and {νk}nk=−n,k �=0 (μ−k = −μk, ν−k = −νk).

2. Characteristic polynomials

Let T be a plane metric tree with q edges. We denote by vj the vertices, by d(vj ) their degrees,
by ej their edges and by lj their lengths. An arbitrary vertex v is chosen to be the root. Local
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coordinates for edges identify the edge ej with the interval [0, lj ] so that the local coordinate
increases as the distance to the root decreases. Each edge ej is divided into nj + 1 subintervals
of lengths l0

j , l
1
j , . . . , l

nj

j by point masses m1
j , m

2
j , . . . , m

nj

j

(
lkj > 0,mk

j > 0, lj = ∑nj

k=0 lkj
)
.

The masses and the intervals are enumerated such that the upper index increases as the distance
to the root decreases. This means that each pendant vertex (if it is not v) is located at the
beginning of some interval of length l0

j . The root is at the end of a subinterval of length l
nj

j

on each edge ej incident with v. All the other interior vertices v have one outgoing edge ej

starting with a subinterval of length l0
j , while each incoming edge er ends at v with an interval

of lengths lnr
r . It is assumed that the tree is stretched and the pendant vertices are fixed. The

tree can vibrate in the direction orthogonal to the equilibrium position of the strings. The
transverse displacement of the mass mk

j is denoted by wk
j (t). If an edge ej is incoming for an

interior vertex v then the displacement of the incoming end of the edge is denoted by w
nj +1
j (t),

while if an edge er is outgoing for a vertex v then the displacement of the outgoing end of the
edge is denoted by w0

r (t). Using such notation, vibrations of the graph can be described by
the system of equations

wk
j (t) − wk+1

j (t)

lkj
+

wk
j (t) − wk−1

j (t)

lk−1
j

+ mk
j

∂2wk
j

∂t2
(t) = 0

(k = 1, 2, . . . , nj ; nj � 1, j = 1, 2, . . . , q). (2.1)

For each interior vertex (except the root) with incoming edges ej and outgoing edge er we
impose the continuity conditions

w0
r (t) = w

nj +1
j (t) (2.2)

for all j corresponding to incoming edges. The balance of forces at such a vertex implies

w1
r (t) − w0

r (t)

l0
r

=
∑

j

w
nj +1
j (t) − w

nj

j (t)

l
nj

j

, (2.3)

where the sum on the right-hand side is taken over all the incoming edges. For an edge
ej incident with a pendant vertex (except the root if it is pendant), we impose the Dirichlet
boundary condition

w0
j (t) = 0. (2.4)

The continuity conditions at the root are

wnr +1
r (t) = w

nj +1
j (t) (2.5)

for all pairs of edges incident with v. We need to impose one more condition at the root. We
consider two cases: the Dirichlet case with

w
nj +1
j (t) = 0 (2.6)

and the Neumann case

∑
j

w
nj +1
j (t) − w

nj

j (t)

l
nj

j

= 0, (2.7)

where the sum is taken over all the edges incident with the root.
Substituting wk

j (t) = eiλtuk
j into (2.1)–(2.7) we obtain the Dirichlet problem described

below.
For each edge:

uk
j − uk+1

j

lkj
+

uk
j − uk−1

j

lk−1
j

− mk
jλ

2uk
j = 0 (k = 1, 2, . . . , nj , j = 1, 2, . . . , q). (2.8)
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For each interior vertex (except of the root) with incoming edges ej and outgoing edge er we
have

u0
r = u

nj +1
j . (2.9)

u1
r − u0

r

l0
r

=
∑

j

u
nj +1
j − u

nj

j

l
nj

j

. (2.10)

For each edge ej incident with a pendant vertex (except the root if it is pendant)

u0
j = 0. (2.11)

At the root v:

u
nj +1
j = 0 (2.12)

for all edges incident with v.
The conditions

u
nk+1
k = u

nj +1
j (2.13)

for all pairs of edges ek and ej incident with the root together with

∑
j

u
nj +1
j − u

nj

j

l
nj

j

= 0 (2.14)

we call Neumann conditions at the root. If the root is a pendant vertex then (2.13), (2.14) are
equivalent to the usual Neumann condition. In what follows, problem (2.8)–(2.12) is called
the Dirichlet problem for the tree T and problem (2.8)–(2.11), (2.13), (2.14) is called the
Neumann problem.

The fundamental system of two linearly independent solutions for (2.8) can be composed
by the polynomials (see [13]) R

(j)

2k−2

(
λ2, l0

j

)
and R

(j)

2k−2(λ
2,∞) which satisfy the initial

conditions R
(j)

0

(
λ2, l0

j

) = 1, R
(j)

−1

(
λ2, l0

j

) = 1
l0
j

, R
(j)

0 (λ2,∞) = 1, R
(j)

−1(λ
2,∞) = 0.

We are looking for the solutions of (2.8) in the form uk
(j) = R

(j)

2k−2

(
λ2, l0

j

)
g1

j +

R
(j)

2k−2(λ
2,∞)h1

j on the edge ej and introduce the polynomials of odd index:

R
(j)

2k−1

(
λ2, l0

j

) = R
(j)

2k

(
λ2, l0

j

) − R
(j)

2k−2

(
λ2, l0

j

)
lkj

,

R
(j)

2k−1(λ
2,∞) = R

(j)

2k (λ2,∞) − R
(j)

2k−2(λ
2,∞)

lkj
.

Then these polynomials satisfy the relations [13]

R
(j)

2k−1

(
λ2, l0

j

) = −λ2m
(j)

k R
(j)

2k−2

(
λ2, l0

j

)
+ R

(j)

2k−3

(
λ2, l0

j

)
,

R
(j)

2k−1(λ
2,∞) = −λ2m

(j)

k R
(j)

2k−2(λ
2,∞) + R

(j)

2k−3(λ
2,∞),

(2.15)

R
(j)

2k

(
λ2, l0

j

) = l
(j)

k R
(j)

2k−1

(
λ2, l0

j

)
+ R

(j)

2k−2

(
λ2, l0

j

)
(k = 1, 2, . . . , nj ),

R
(j)

2k (λ2,∞) = l
(j)

k R
(j)

2k−1(λ
2,∞) + R

(j)

2k−2(λ
2,∞) (k = 1, 2, . . . , nj ).

(2.16)

With this notation we obtain the following using (2.9)–(2.12).
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For each interior vertex (except the root) with incoming edges ej and outgoing
edge ek:

R
(j)

2nj

(
λ2, l0

j

)
g1

j + R
(j)

2nj
(λ2,∞)h1

j = h1
k, (2.17)

g1
k

l0
k

=
∑

j

(
R

(j)

2nj −1

(
λ2, l0

j

)
g1

j + R
(j)

2nj −1(λ
2,∞)h1

j

)
. (2.18)

For each edge ej incident with a pendant vertex (except the root if it is pendant)

h1
j = 0. (2.19)

At the root v we have

R
(j)

2nj −1

(
λ2, l0

j

)
g1

j + R
(j)

2nj −1(λ
2,∞)h1

j = 0 (2.20)

for all the edges incident with v. Equations (2.17)–(2.20) complete the Dirichlet problem,
while (2.17)–(2.19) together with equations

R
(j)

2nj

(
λ2, l0

j

)
g1

j + R
(j)

2nj
(λ2,∞)h1

j = R
(j)

2nk

(
λ2, l0

k

)
g1

k + R
(j)

2nk
(λ2,∞)h1

k (2.21)

and ∑
j

(
R

(j)

2nj −1

(
λ2, l0

j

)
g1

j + R
(j)

2nj −1(λ
2,∞)h1

k

) = 0 (2.22)

complete the Neumann problem.
Then the characteristic function of the Neumann problem, i.e., a polynomial

whose zeros coincide with the spectrum of the problem, can be expressed by
l0
j R

(j)

2nj

(
λ2, l0

j

)
, l0

j R
(j)

2nj −1

(
λ2, l0

j

)
, R

(j)

2nj
(λ2,∞) and R

(j)

2nj −1(λ
2,∞). To do this, we introduce

the following system of vectors:

ψj(λ
2) = col

{
0, 0, . . . , 0, l0

j R
(j)

−2

(
λ2, l0

j

)
, l0

j R
(j)

0

(
λ2, l0

j

)
, . . . , l0

j R
(j)

2nj

(
λ2, l0

j

)
, 0, 0, . . . , 0︸ ︷︷ ︸

n+2q

,

0, 0, . . . , 0︸ ︷︷ ︸
n+2q

}
,

ψj+q(λ
2) = col

{
0, 0, . . . , 0︸ ︷︷ ︸

n+2q

,

0, 0, . . . , 0, R
(j)

−2(λ
2,∞), R

(j)

0 (λ2,∞), . . . , R
(j)

2nj
(λ2,∞), 0, 0, . . . , 0︸ ︷︷ ︸

n+2q

}

for j = 1, 2, . . . , q, where q is the number of edges in T , n = ∑q

j=1 nj . As in [30] we denote
by Lj (j = 1, 2, . . . , 2q) the linear functionals C2n+4q → C generated by (2.17)–(2.22).
Then �(λ2) = {Lj(ψp(λ2)}2q

j,p is the characteristic matrix which represents the system of
linear equations describing the boundary conditions at pendant vertices and continuity and
Kirchhoff conditions for the interior vertices. We call

φN(λ2) := det(�(λ2))

the characteristic function of problem (2.8)–(2.11), (2.13), (2.14). For the sake of convenience,
we use the spectral parameter z = λ2. It is easy to see that the characteristic function satisfies

φN(z) = φN(z).
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Figure 1.

We are also interested in the problem generated by the same equations and the same
boundary and matching conditions, but with conditions (2.12) instead of (2.13), (2.14) at v.
We denote this characteristic function of problem (2.8)–(2.12) by φD(λ2). In the case when
v is a pendant vertex condition, (2.12) coincides with the Dirichlet boundary condition. Also
φD(z) satisfies the symmetry condition

φD(z) = φD(z).

Let us assume that the root v is an interior vertex. We divide our tree T into two subtrees
T1 and T2 having v as the only common vertex. (We say that T1 and T2 are the complementary
subtrees of T; see figure 1.)

We consider two Neumann problems on the subtrees generated by the recurrence relations
on the edges,

uk
j,s − uk+1

j,s

lkj,s
+

uk
j,s − uk−1

j,s

lk−1
j,s

− mk
j,sλ

2uk
j,s = 0 (k = 1, 2, . . . , nj,s , s = 1, 2). (2.23)

For an edge ej,s ∈ Ts incident with a pendant vertex, we impose the Dirichlet boundary
condition

u0
j,s = 0. (2.24)

For each interior vertex of Ts (except the root) with incoming edges ej,s and outgoing edge
er,s , we have

u0
r,s = u

nj,s+1
j,s , (2.25)

u1
r,s − u0

r,s

l0
r,s

=
∑

j

u
nj,s+1
j,s − u

nj,s

j,s

l
nj,s

j,s

. (2.26)

At the root v of the subtree Ts , we still have the continuity conditions

unr,s+1
r,s = u

nj,s+1
j,s (2.27)

6
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for all pairs of edges of Ts incident with v and the Kirchhoff condition

∑
j

u
nj,s+1
j,s − u

nj,s

j,s

l
nj,s

j,s

= 0. (2.28)

Here the sum is taken over all the edges of Ts incident with v.
The two Dirichlet problems on T1 and T2 are described as follows:

uk
j,s − uk+1

j,s

lkj,s
+

uk
j,s − uk−1

j,s

lk−1
j,s

− mk
j,sλ

2uk
j,s = 0 (k = 1, 2, . . . , nj,s , s = 1, 2); (2.29)

for an edge ej,s ∈ Ts incident with a pendant vertex we have

u0
j,s = 0, (2.30)

for each interior vertex of Ts (except the root) with incoming edges ej,s and outgoing edge
er,s :

u0
r,s = u

nj,s+1
j,s , (2.31)

u1
r,s − u0

r,s

l0
r,s

=
∑

j

u
nj,s+1
j,s − u

nj,s

j,s

l
nj,s

j,s

, (2.32)

and at the root v:

unr,s+1
r,s = 0 (2.33)

for all edges of Ts incident with v.
Denote by φ

(s)
N (z) the characteristic function of problems (2.23)–(2.28) and by φ

(s)
D (z) the

characteristic function of problems (2.29)–(2.33) with z = λ2. With these terminologies, we
obtain a reduction formula for the characteristic functions of a tree. The following theorem is
a discrete analogue of theorem 2.1 in [25], and its proof is similar to that in [25].

Theorem 2.1. Let the root v of a tree T be an interior vertex. Let T1 and T2 be the
complementary subtrees of T. Then with the same orientation of the graph and the subgraphs’
edges described above,

φN(z) = φ
(1)
N (z)φ

(2)
D (z) + φ

(1)
D (z)φ

(2)
N (z), φD(z) = φ

(1)
D (z)φ

(2)
D (z). (2.34)

Proof. Fix the edges ej ∈ T1 and er ∈ T2 incident with the root v. (The case when v is a
boundary vertex is even simpler.) Then the characteristic matrix �(z) can be expressed as

�(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ · · · · · · ∗ 0 · · · · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

∗ · · · · · · ∗ 0 · · · · · · 0

0 · · · l0
j,1R

(j,1)

2nj,1

(
z, l0

j,1

)
R

(j,1)

2nj,1
(z, ∞) −l0

j,2R
(r,2)
2nr,2

(
z, l0

j,2

)
−R

(r,2)
2n(r,2)

(z, ∞) · · · 0

∗ · · · l0
j,1R

(j,1)

2nj,1−1

(
z, l0

j,1

)
R

(j,1)

2nj,1−1(z, ∞) l0
j,2R

(r,2)
2nr,2−1

(
z, l0

j,2

)
R

(r,2)
2nr,2−1(z, ∞) · · · ∗

0 · · · · · · 0 ∗ · · · · · · ∗
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 · · · · · · 0 ∗ · · · · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here the upper left square submatrix describes the continuity and Kirchhoff conditions at the
vertices in T1. So its determinant is φ

(1)
D (z), since the last row demonstrates the Dirichlet

condition at v. The lower right square submatrix describes those conditions in T2 with the

7
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Neumann boundary condition at v. So its determinant is φ
(2)
N (z). What remains in det �(z) is

the product of the determinants of the upper left submatrix and lower right submatrix formed by
interchanging the middle two row vectors concerning the continuity and Kirchhoff conditions
at v. Hence the overall characteristic function φN(z) is given by

φN(z) = det �(z) = φ
(1)
D (z)φ

(2)
N (z) − det

⎡
⎢⎢⎢⎢⎣

∗ · · · · · · ∗
...

...
...

...

∗ · · · · · · ∗
∗ · · · l0

j,1R
(j,1)

2nj,1−1

(
z, l0

j,1

)
R

(j,1)

2nj,1−1(z,∞)

⎤
⎥⎥⎥⎥⎦

· det

⎡
⎢⎢⎢⎢⎣

−l0
j,2R

(r,2)
2nr,2

(
z, l0

j,2

) −R
(r,2)
2nr,2

(z,∞) · · · 0

∗ · · · · · · ∗
...

...
...

...

∗ · · · · · · ∗

⎤
⎥⎥⎥⎥⎦

= φ
(1)
D (z)φ

(2)
N (z) + φ

(1)
N (z)φ

(2)
D (z).

Equation (2.34) is evident from the definition of φD(z). �

Corollary 2.2. Suppose a tree T rooted at v has d(v) complementary subtrees Ti (i = 1,

2, . . . , d(v)) each rooted at v. Let φ
(i)
N and φ

(i)
D denote the Neumann and the Dirichlet

characteristic functions for Ti . If v is a pendant vertex for Ti , then

φN(z) =
d(v)∑
i=1

φ
(i)
N (z)

d(v)∏
i=1,k �=i

φ
(k)
D (z), (2.35)

φD(z) =
d(v)∏
i=1

φ
(i)
D (z). (2.36)

Now consider a subtree Tj . Deleting v together with the edge ej incident with it, we
obtain a subtree T ′

j (see figure 2). We choose the vertex v′ adjacent to v in T as the root of

the subtree T ′
j . We denote by φ

(′)
D (z) and φ

(′)
N (z) the Dirichlet and Neumann characteristic

polynomials for the subtree T ′
j rooted at v′. Now considering the original subtree Tj rooted at

v′ we separate it into two subtrees T ′
j and one consisting of one edge ej only. Then applying

theorem 2.1 we obtain the following obvious result.

Corollary 2.3. Denote by N ′
j the number of point masses on the edge ej . Then

φ
(j)

N (z) = R
(j)

2N ′
j −1(∞, z)φ

(′)
D (z) + l′0R

(j)

2N ′
j −1(l

′
0, z)φ

(′)
N (z), (2.37)

φ
(j)

D (z) = R
(j)

2N ′
j
(∞, z)φ

(′)
D (z) + l′0R

(j)

2N ′
j
(l′0, z)φ

(′)
N (z). (2.38)

Another application of theorem 2.1 lies in understanding the function φD

φN
. For this, we need

the notion of a Nevanlinna function. It is also called the R-function [19] or Herglotz function,
and its definition also varies. Below is the definition we use in this paper.

Definition 2.4. A meromorphic function f (z) is said to be a Nevanlinna function if:

(i) it is analytic in the half-planes Im z > 0 and Im z < 0;
(ii) f (z) = f (z) (Im z �= 0);

(iii) Im z Im f (z) � 0 for Im z �= 0.

8
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T V

ej

V’

V’T’j

Tj V

ej

V’

Figure 2.

Definition 2.5 (see [19]). The Nevanlinna function ω(z) is said to be an S-function if ω(z) > 0
for z < 0.

Definition 2.6. The S-function ω(z) is said to be an S0-function if 0 is not a pole of ω(z).

The following lemma is obvious.

Lemma 2.7. Suppose that f and g are Nevanlinna functions; then f + g and − 1
f

are also
Nevanlinna functions.

Theorem 2.8. The ratio
φD(z)

φN(z)

is an S0-function.

Proof. Substituting z = λ2 into (2.8), we multiply it by uk
j . The imaginary part of the obtained

equation is

Im
((

uk
j − uk+1

j

)
uk

j

)
lkj

− Im
((

uk−1
j − uk

j

)
uk−1

j

)
lk−1
j

= Im z mk
j

∣∣uk
j

∣∣2
. (2.39)

Summing up (2.39) over k we obtain

Im
((

u
nj

j − u
nj +1
j

)
u

nj +1
j

)
l
nj

j

− Im
((

u0
j − u1

j

)
u1

j

)
l0
j

= Im
((

u
nj

j − u
nj +1
j

)
u

nj

j

)
l
nj

j

− Im
((

u0
j − u1

j

)
u1

j

)
l
j

j

= Im z

nj∑
k=1

mk
j

∣∣uk
j

∣∣2
. (2.40)

Adding identities (2.40) over all edges and taking into account (2.9)–(2.11), (2.13), (2.14) we
obtain

9
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Im

⎛
⎝u

n1+1
1

d(v)∑
j=1

u
nj

j − u
nj +1
j

l
nj

j

⎞
⎠ = Im z

q∑
j=1

nj∑
k=1

mk
j

∣∣uk
j

∣∣2
,

where the sum on the left-hand side is taken over all edges incident with the root, and the sum
on the right-hand side is taken over all the edges of the graph.

The last equation can be rewritten as

Im

⎛
⎝ 1

u
n1+1
1

d(v)∑
j=1

u
nj

j − u
nj +1
j

l
nj

j

⎞
⎠ = Im z∣∣un1+1

1

∣∣2

q∑
j=1

nj∑
k=1

mk
j

∣∣uk
j

∣∣2
. (2.41)

The right-hand side of (2.41) is positive. We note that z = λ2 is a zero of
∑d(v)

j=1
u

nj

j −u
nj +1

j

l
nj

j

if and only if λ is an eigenvalue of problem (2.8)–(2.11), (2.13), (2.14) and z = λ2 is a zero
of u

n1+1
1 if and only if λ is an eigenvalue of problem (2.8)–(2.12). This means that

1

u
n1+1
1

d(v)∑
j=1

u
nj

j − u
nj +1
j

l
nj

j

= −φN(z)

φD(z)
.

Taking account of lemma 2.7, we conclude that φD(z)

φN (z)
is a Nevanlinna function. To finish the

proof we note that according to (2.15)–(2.16) all R
(j)

k (z) are positive for z ∈ (−∞, 0] and
consequently the polynomials φD(z) and φN(z) are positive for z ∈ (−∞, 0]. The theorem is
proved. �

Corollary 2.9. The zeros
{
ν2

k

}
of φD(z) interlace with the zeros

{
μ2

k

}
of φN(z):

0 < μ2
1 � ν2

1 � μ2
2 � ν2

2 � · · · � ν2
N .

Proof. The ratio �D(z)

�N (z)
becomes an S0-function after cancellation of common multipliers

in the numerator and denominator, if any. The zeros of an S0-function interlace in strict
correspondence with its poles. The corollary is proved. �

Let d(v) > 1. Then according to corollary 2.2

φD(z)

φN(z)
= 1

∑d(v)
j=1

(φ
(j)

D (z)

φ
(j)

N (z)

)−1
.

Let ej be an edge incident with the root v and with a vertex v′ ∈ Tj . The number of point
masses on this edge is denoted by N ′

j . For this edge, the Lagrange identity (see [19]) written
in our terms gives

R
(j)

2N ′
j
(l′j0, z)R

(j)

2N ′
j −1(∞, z) − R

(j)

2N ′
j −1(l

′
j0, z)R

(j)

2N ′
j
(∞, z) = − 1

l′j0

. (2.42)

Using (2.37), (2.38) and (2.42) we obtain

φ
(j)

D (z)

φ
(j)

N (z)
=

R
(j)

2N ′
j
(l′j0, z)

R
(j)

2N ′
j −1(l

′
j0, z)

+
φ

(′)
D (z)

l′j0φ
(j)

N (z)R
(j)

2N ′
j −1(l

′
j0, z)

(2.43)

and

φ
(j)

D (z)

φ
(j)

N (z)
=

R
(j)

2N ′
j
(∞, z)

R
(j)

2N ′
j −1(∞, z)

− φ
(′)
N (z)

l′j0φ
(j)

N (z)R
(j)

2N ′
j −1(∞, z)

. (2.44)

10
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The following expansions in continued fractions can be found in [13]:

R
(j)

2N ′
j
(l′j0, z)

R
(j)

2N ′
j −1(l

′
j0, z)

= l′N ′
j

+
1

−m′
N ′

j
z + 1

l′
N ′

j
−1

+ 1
−m′

N ′
j
−1

z+···+ 1
l′1+ 1

−m′
1z+ 1

l′0

, (2.45)

R
(j)

2N ′
j
(∞, z)

R
(j)

2N ′
j −1(∞, z)

= l′N ′
j

+
1

−m′
N ′

j
z + 1

l′
N ′

j
−1

+ 1
−m′

N ′
j
−1

z+···+ 1
l′1+ 1

−m′
1z

, (2.46)

l′0
R

(j)

2N ′
j −1(l

′
0, z)

R
(j)

2N ′
j −1(∞, z)

= l′0 +
1

−m′
1z + 1

l′1+ 1
−m′

2z+···+ 1
l′
N ′

j
−1

+ 1
−m′

N ′
j

z

, (2.47)

l′0
R

(j)

2N ′
j
(l′0, z)

R
(j)

2N ′
j
(∞, z)

= l′0 +
1

−m′
1z + 1

l′1+ 1
−m′

2z+···+ 1
l′
N ′

j
−1

+ 1
−m′

N ′
j

z+ 1
l′
N ′

j

. (2.48)

Here l′k are the subintervals and m′
k are the masses located on ej .

An S0-function φ
(j)

D (z)

φ
(j)

N (z)
with pj (pj � Nj) zeros and pj poles can be expanded in the

continued fraction,

φ
(j)

D (z)

φ
(j)

N (z)
= aN ′

j
+

1

−bN ′
j
z + 1

aN ′
j
−1+ 1

−b
N ′

j
−1z+···+ 1

a1+ 1
−b1z+ 1

a0+f1(z)

, (2.49)

where

f1(z) = ã0 +
1

−bN ′
j +1z + 1

aN ′
j

+1+ 1
−b

N ′
j

+2z+···+ 1
apj −1+ 1

−bpj
z+ 1

apj

.

Here a0 > 0, ã0 � 0. We note that there is ambiguity in choice of a0 and ã0. The expansion
into the continued fractions gives only the value of the sum a0 + ã0. However, we choose a0

such that
∑N ′

j

k=0 ak = lj . It will be clear below that this is possible, i.e., that ã0 +
∑pj

k=0 ak > lj .
Comparing (2.49) with (2.43) for z → ∞ and taking into account (2.45) we conclude that
ak = l′k and bk = m′

k for each k = 0, 1, 2, . . . , N ′
j and that pj > N ′

j . Now using (2.43),
(2.44), (2.45) and (2.49) we see that the set of zeros of f1(z) coincides with the set of zeros
of φ

(′)
D (z) while the set of poles of f1(z) coincides with the set of zeros of φ

(′)
N (z). This means

that f1(z) = C
φ

(′)
D (z)

φ
(′)
N (z)

where C is a nonzero real constant.

Let us express φN (0)

φD(0)
via the lengths of the intervals lj . First of all, corollary 2.2 implies

φN(0)

φD(0)
=

d(v)∑
j=1

φ
(j)

N (0)

φ
(j)

D (0)
.

11
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Here for those of subtrees Tj which consist not just of one edge according to (2.37), (2.38) we
have

φ
(j)

N (0)

φ
(j)

D (0)
=

R
(j)

2N ′
j −1(∞, 0)φ

(′)
D (0) + l′0R

(j)

2N ′
j −1(l

′
0, 0)φ

(′)
N (0)

R
(j)

2N ′
j
(∞, 0)φ

(′)
D (0) + R

(j)

2N ′
j
(l′0, 0)φ

(′)
N (0)

=
R

(j)

2N ′
j −1(l

′
0, 0)

R
(j)

2N ′
j
(l′0, 0)

R
(j)

2N ′
j
−1

(∞,0)

l′0R
(j)

2N ′
j
−1

(l′0,0)
+ φ

(′)
N (0)

φ
(′)
D (0)

R
(j)

2N ′
j

(∞,0)

l′0R
(j)

2N ′
j

(l′0,0)
+ φ

(′)
N (0)

φ
(′)
D (0)

. (2.50)

Using (2.46), (2.47) and (2.48) we obtain from (2.50)

φ
(j)

D (0)

φ
(j)

N (0)
= lj +

φ
(′)
D (0)

φ
(′)
N (0)

. (2.51)

On the other hand, (2.49) implies

φ
(j)

D (0)

φ
(j)

N (0)
= lj + f1(0),

which gives C = 1 and therefore f1(z) = φ
(′)
D (z)

φ
(′)
N (z)

and f1(0) > 0, and consequently

ã0 +
∑pj

k=0 ak > lj .
Let us recall that T ′

j is the subtree of Tj obtained from Tj by deleting the edge ej incident
with v and v′ is the other vertex incident with e′

j . The subtree T ′
j is rooted at v′. Denote by

d(v′) the degree of v′ as of the root of T ′
j . Then

φ
(′)
N (z)

φ
(′)
D (z)

=
d(v′)∑
k=1

φ
(k′)
N (z)

φ
(k′)
D (z)

,

where φ
(k′)
N (z) and φ

(k′)
D (z) are characteristic polynomials for Neumann and Dirichlet problems,

correspondingly, on the complementary subtrees T ′
j,k (k = 1, 2, . . . , d(v′)) of T ′

j rooted at v′.
Thus, we can continue expanding into continuous fractions

f1(z) = φ
(′)
D (z)

φ
(′)
N (z)

= 1
∑d(v′)

k=1
φ

(k′)
N (z)

φ
(k′)
D (z)

= 1

∑d(v′)
k=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ã
(k′)
0 + 1

−b
(k′)
N ′+1

z+ 1

a
(k′)
N ′+1

+ 1

−b
(k′)
N ′+2

z+···+ 1

a
(k′)
N−1+ 1

−b
(k′)
N

z+
φ
(k′′)
D

(z)

φ
(k′′)
N

(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.52)

Here φ
(k′′)
N (z) and φ

(k′′)
D (z) are characteristic polynomials for Neumann and Dirichlet problems,

correspondingly, on the complementary subtrees of T ′′
k rooted at v′′ where T ′′

k are the subtrees
obtained from T ′

j in the way T ′
j was obtained from T. This expansion into ‘branching’ continued

fractions can be continued.
Note that (2.51) is a recurrence formula which together with the conditions φ

(jr)

N (0)

φ
(jr)

D (0)
= 1

ljr

for pendant edges ejr determines φ
(j)

N (0)

φ
(j)

D (0)
and φN (0)

φD(0)
. Thus, we can find φN (0)

φD(0)
and the analogous

12
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quantity for each subtree and these quantities are independent of mass distribution. We call it
the form characteristic of the subtree T for which v is the root and we denote it by �T,v.

The proofs of the following theorems 2.10 and 2.13 and corollaries 2.11, 2.12, 2.14 are
nearly the same as in [25] for the continuous case, therefore we omit them.

Theorem 2.10. Denote by pN(z) the multiplicity of z as a zero of φN and by pD(z) the
multiplicity of z as a zero of φD(z). Then

(a) |pN(z) − pD(z)| � 1;
(b) pN(z) � q − κ , where κ is the number of interior vertices.

Corollary 2.11.

(a) If the root v is an interior vertex then pD(z) � q − κ + 1;
(b) If v is a pendant vertex then

pD(z) + pN(z) � 2q − 2κ − 1.

Corollary 2.12. Let the root be an interior vertex. Then

(i) The multiplicity of any eigenvalue of problem (2.8)–(2.11), (2.13), (2.14) does not exceed
q − κ .

(ii) The multiplicity of any eigenvalue of problem (2.8)–(2.12) does not exceed q − κ + 1.

Theorem 2.13. Suppose that z0 is a common zero of φN(z) and φD(z) with multiplicities pN

and pD , respectively. Then pN � pD implies that pD � q − d(v) − κ + 1.

Let us consider a star-shaped graph of q edges rooted at the interior vertex.
Denote by

{
μ2

k

}
the set of zeros of φN(z) and by

{
ν2

k

}
the set of zeros of φD(z).

Corollary 2.14. For a star-shaped graph rooted at the interior vertex

(a) ν2
k = μ2

k+1 if and only if μ2
k+1 = ν2

k+1.
(b) Multiplicity of ν2

k does not exceed q.

Thus, we have obtained theorem 2.2 in [3] as a particular case.

3. Inverse problem for a tree of Stieltjes strings

Here we give a positive answer to the question: given two sequences of interlacing real nonzero
numbers symmetric with respect to the origin, a rooted metric tree of a prescribed form with
prescribed lengths of edges, does a distribution of point masses and subintervals on the edges
exist such that the two sequences are Neumann and Dirichlet spectra for this tree?

Theorem 3.1. Let {μk}nk=−n,k �=0 and {νk}nk=−n,k �=0 be symmetric (μ−k = −μk, ν−k = −νk)

and monotonic sequences of real numbers which interlace:

0 < (μ1)
2 < (ν1)

2 < · · · < (μn)
2 < (νn)

2.

Let T be a metric tree of a prescribed form rooted at a vertex v with complementary subtrees
Tj (j = 1, 2, . . . , d(v) where d(v) is the degree of the root) with prescribed lengths of edges lj
(j = 1, 2, . . . , q, q is the number of edges in T). Let Nj (j = 1, 2, . . . , d(v)) be nonnegative
integers and

∑d(v)
j=1 Nj = n.

Then there exist sets of positive numbers
{
m

j

k

}nj

k=1 (point masses on the edge ej , j =
1, 2, . . . , q) and nonnegative numbers

{
l
j

k

}nj

k=0 (lengths of subintervals on the edge ej ) such

13
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that
∑nj

k=0 l
j

k = lj ,
∑q

j=1 nj = n, the numbers of point masses on the complementary subtrees
Tj are Nj (j = 1, 2, . . . , d(v)) and the spectrum of the Neumann problem (2.8)–(2.11), (2.13),
(2.14) coincides with {μk}nk=−n,k �=0, and the spectrum of the Dirichlet problem (2.8)–(2.12)
coincides with {νk}nk=−n,k �=0.

Proof. Let us use induction by the length of the longest path starting at the root. If the length
of the longest path is 1, we are dealing with a star graph and the statement of our theorem has
been proved in [3]. Let m denote the maximal length of path in T starting at the root. Let us
assume the statement of the theorem to be true for each rooted tree with m = p − 1 and let us
prove it for a tree with m = p.

First of all, we consider the rational function

�T,v

n∏
k=1

1 − z

μ2
k

1 − z

ν2
k

, (3.1)

where �T,v > 0 is the form characteristic of the tree. Here �T,v is known because the form
of T is given as well as the length of each edge.

We will show that (3.2) is nothing but φN (z)

φD(z)
for our given graph and a certain distribution

of masses and a certain division of the edges into subintervals.
If d(v) > 1 then we divide the tree into d(v) complementary subtrees Tj each rooted at

v. If the root is pendant this step is unnecessary. It is clear that
(
�T,v

∏n
k=1

1− z

μ2
k

1− z

ν2
k

)−1
belongs

to S0 and therefore

�T,v

n∏
k=1

1 − z

μ2
k

1 − z

ν2
k

=
n∑

k=1

Ak

z − ν2
k

+ B,

where Ak > 0 and B = �T,v +
∑n

k=1
Ak

ν2
k

. We arrange the set {ν2
k }nk=1 as the union of disjoint

sets
{
ν2

k
(1)
s

}N1

s=1,
{
ν2

k
(2)
s

}N2

s=1, . . . ,
{
ν2

k
d(v)
s

}Nd(v)

s=1 . Then
∑d(v)

j=1 Nj = n and

�T,v

n∏
k=1

1 − z

μ2
k

1 − z

ν2
k

=
d(v)∑
j=1

⎛
⎝

Nj∑
s=1

Aks

z − ν2
ks

+ Bj

⎞
⎠ ,

where we choose Bj such that

Bj = �Tj ,v +
Nj∑
s=1

Aks

ν2
ks

, (3.2)

and �Tj ,v are the form characteristics of the subtrees Tj and consequently �T,v = ∑d(v)
j=1 �Tj ,v.

The rational function
Nj∑
s=1

Aks

z − ν2
ks

+ Bj

has Nj simple zeros and Nj simple poles and due to inequalities Ak > 0 and to (3.3) we
conclude that ⎛

⎝
Nj∑
s=1

Aks

z − ν2
ks

+ Bj

⎞
⎠

−1

belongs to S0 for each j = 1, 2, . . . , d(v). We will prove that these rational functions are
φ

(j)

N (z)

φ
(j)

D (z)
, where φ

(j)

N (z) and φ
(j)

D (z) are the characteristic polynomials for the Neumann and

14
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Dirichlet problems on the subtree Tj for a certain distribution
{
m

j

k

}nj

k=1 (j = 1, 2, . . . , q) of

point masses and a certain distribution of subintervals
{
l
j

k

}nj

k=0

( ∑nj

k=0 l
j

k = lj
)

on the edges
of Tj .

Let us expand
( ∑Nj

s=1
Aks

z−ν2
ks

+ Bj

)−1
into continued fractions of the form

⎛
⎝

Nj∑
s=1

Aks

z − ν2
ks

+ Bj

⎞
⎠

−1

= aN ′
j

+
1

−bN ′
j
z + 1

aN ′
j
−1+ 1

−b
N ′

j
−1z+···+ 1

a1+ 1
−b1z+ 1

a0

+
QD(z)

PD(z)
,

⎛
⎝

Nj∑
s=1

Aks

z − ν2
ks

+ Bj

⎞
⎠

−1

= aN ′
j

+
1

−bN ′
j
z + 1

aN ′
j
−1+ 1

−b
N ′−1z+···+ 1

a1+ 1
−b1z

+
QN(z)

PN(z)
.

(3.3)

Here N ′
j is defined by the condition

∑N ′
j

k=0 ak = lj . Polynomials QN(z) and QD(z) are of
degree Nj − N ′

j , and PN(z) and PD(z) are polynomials of degree Nj + N ′
j . We identify ak-s

with the lengths of subintervals and bk-s with point masses on the edge ej .
Let us prove that QD(z)

QN (z)
is an S0-function. To do this, let us note that

⎛
⎝

Nj∑
s=1

Aks

z − ν2
ks

+ Bj

⎞
⎠

−1

= aN ′
j

+
1

−bN ′
j
z + 1

aN ′
j
−1+ 1

−b
N ′

j
−1z+···+ 1

a1+ 1
−b1z+ 1

a0+f1(z)

, (3.4)

where

f1(z) = ã0 +
1

−bN ′
j +1z + 1

aN ′
j

+1+ 1
−b

N ′
j

+2z+···+ 1
aNj −1+ 1

−bNj
z+ 1

aNj

. (3.5)

Comparing (3.3) with (3.4) we note that the zeros of QD(z) are nothing but the zeros of f1(z),

and the zeros of QN(z) are the zeros of the function f2(z)
def= 1

a0+f1(z)
or, which is the same, the

poles of f1(z). Judging by (3.5) we conclude that f1(z) is an S0-function.
Substituting z = 0 into (3.4) and making use of (3.3) we obtain

�−1
Tj ,v = lj + f1(0).

On the other hand (2.51) means nothing but

�−1
Tj ,v = lj + �−1

T ′
j ,v

′

and consequently f1(0) = �−1
T ′

j ,v
′ .

The function f1(z) belongs to S0 and has Nj −N ′
j zeros and Nj −N ′

j poles and the length
of the longest path in T ′

j starting at v′ is equal to p − 1. The corresponding distribution of
masses and subintervals on T ′

j exists according to the induction assumption. The theorem is
proved. �

References

[1] von Below J 2001 Can one hear the shape of a network? Partial Differential Equations on Multistructures
(Lecture Notes in Pure Mathematics vol 219) (New York: Dekker) pp 19–36

[2] Borg G 1946 Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe Acta Math. 78 1–96

15

http://dx.doi.org/10.1007/BF02421600


J. Phys. A: Math. Theor. 42 (2009) 375213 V Pivovarchik

[3] Boyko O and Pivovarchik V 2008 Inverse spectral problem for a star graph of Stieltjes strings Methods Funct.
Anal. Topology 14 159–67

[4] Boyko O and Pivovarchik V 2008 The inverse three-spectral problem for a Stieltjes string and the inverse
problem with one-dimensional damping Inverse Problems 24 015019

[5] Brown M and Weikard R 2005 A Borg–Levinson theorem for trees Proc. R. Soc. Lond. A 461 3231–43
[6] Carlson R 1998 Adjoint and self-adjoint differential operators on graphs Electron. J. Diff. Eqns 6 10 pp

(electronic)
[7] Cauer W 1926 Die Verwirklichung von Wechselstromwiderständen vorgeschriebenuer Frequenzabhängigkeit
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